1.1
2.2 reacción. Cinética de reacción.
En investigaciones anteriores, El proceso ha
sido empleado exitosamente en la síntesis de SiC usando como elementos de
entrada dióxido de silicio (cuarzo) y negro de humo, carbono amorfo. Los
estudios termogravimétricos han demostrado que la reacción de formación de SiC
y liberación de CO comienza a temperaturas tan bajas como 800 grados
centígrados.
MET_54_3_579_582 SiO2plusC - SiC
1.1.1
2.2.1 reaccion en la superficie
(SiO2 + C)
Carbothermal reduction is the primary chemical
process practiced commercially for the synthesis of many ceramic materials,
including SiC, The overall reduction reaction can be written as:
SiO2 (s) + 3C (s) = SiC (s) + 2CO (g) (1)
DG° = 598.18 - 0.3278 T (kJ)
The standard Gibbs free energy of the above
reaction decreases with increasing temperature and becomes zero at 1525 °C.
However, the reaction can take place at lower temperatures when the CO partial
pressure is significantly lower than atmospheric pressure. It is generally
accepted that SiC is synthesized through intermediate silicon monoxide (SiO)
[2]:
C (s) + SiO2 (s) = SiO (g) + CO (g) (2)
DG° = 668.07 - 0.3288 T (kJ)
SiO (g) + 2C (s) = SiC (s) + CO (g)
(3)
DG° = -78.89 + 0.0010 T (kJ)
The standard Gibbs free energy of Reaction (3)
is negative in the examined temperature range (1000 to 2000 oC), therefore
theoverall reaction of SiC formation is defined by the reaction of SiO
formation. It is well established that the kinetics of carbothermal reduction
of SiO2 is affected by temperature [3], molar SiO2/C ratio [4], carbon and SiO2
particle size [5], and initial bulk density [6]. The effect of gas atmosphere
on the carbothermal reduction of silica has been studied to a lesser extent.
The SiC formation will stop when the CO partial pressure in Reaction (1)
reaches the equilibrium value. CO has to
diffuse out of the reactant mixture for further reaction to take place.
Carbothermal reduction of silica involves
gaseous intermediate SiO. When the reduction of quartz is carried out in Ar,
SiO is initially formed at the contact points of graphite and quartz particles
following the solid-solid Reaction (2), and then SiO is further reacts with
carbon to form SiC following Reaction (3). SiO can also be generated by
Reaction (6) which, with the decrease in the contact area between quartz and
graphite, becomes a major reaction for the SiO formation. CO2 formed in
Reaction (6) is converted back to CO by Boudouard Reaction (7) which is highly
favoured thermodynamically within the temperature range of isothermal reduction
experi ments of this investigation.
SiO2 (s) + CO (g) = SiO (g) +CO2 (g) (6)
C (s) + CO2 (g) = 2CO (g) (7)
Figure 7: CO evolution rate in the temperature
programmed reduction of quartz in different gas atmospheres.
In the carbothermal reduction of SiO 2 in Ar,
the conversion of quartz to SiC started at 1300 °C, and
was incomplete after 270 minutes at 1500 °C.
SYNTHESIS OF SILICON CARBIDE BY CARBOTHERMAL REDUCTION
OF QUARTZ IN H2-Ar GAS MIXTURES
Xiang Li1, Guangqing Zhang1, Kai Tang2, Oleg Ostrovski3 and Ragnar Tronstad
The Fourteenth International Ferroalloys
Congress Energy efficiency and environmental friendliness are the future of the
global Ferroalloy industry May 31-June 4, 2015 Kiev, Ukraine pag.548
2 Lee, J.G., Miller, P.D., Cutler, I.B.,
Reactivity of solids. Plenum Press, 1976.
3 Moshtaghioun, B.M., Poyato, R., Cumbrera,
F.L., Bernardi-Martin, de S., Monshi, A., Abbasi, M.H., Karimza-deh, F.,
Dominguez-Rodriguez, A.,Rapid carbothermic synthesis of silicon carbide nano
powders by using mi-crowave heating. J. Eur. Ceram. Soc. 32(2012), pp.
1787–1794.
4 Agarwal, A., Pal,U., Influence of pellet
composition and structure on carbothermic reduction of silica. Metall. Mater.
Trans. B 30(1999), pp. 295–306.
5 Martello,D. E., Tranell, G. , Gaal, S.,
Raaness, O.S., Tang, K., Arnberg, L.,Study of pellets and lumps as raw
materials in silicon production from quartz and silicon carbide. Metall. Mater.
Trans. B 42( 2011), pp. 939–950.
6 Yao,J., Wang,H., Zhang,X., Zhu,W., Wei,J.,
Cheng, Y.B., Role of pores in the carbothermal reduction of carbonsilica
nanocomposites into silicon carbide nanostructures. J. Phys. Chem. C 111(2007),
pp. 636–641.
Dado que se escogio la ruta de carboreduccion
a través de monóxido de silicio se tiene que tomar en cuenta que hay una
segunda reacción que descompone el SiC en monóxido de silicio y CO.
SiO2(s) + C(s) → SiO(g) + CO(g);
SiO(g) + 2C(s) → SiC(s) + CO(g).
The second stage consists of reactions between
silica with silicon carbide which form silicon monoxide and, where conditions
permit, may also form silicon metal.
The major reaction during this stage is
2SiO2(g) + SiC(s) → 3SiO(g) + CO(g).
Biernacki,
J. J. and Wotzak, G. P. (1989), Stoichiometry of the C + SiO2 Reaction. Journal of the American Ceramic Society, 72:
122-129. doi:10.1111/j.1151-2916.1989.tb05964.x
Como ambos productos son gases se espera que no permanezcan
en el film obtenido. Sino que se difundan y se liberen a la atmosfera.
Hay que detener el proceso de anneado antes de que todo el
SiC obtenido se volatilice.
1.1.2
2.2.2REACCION en el sustrato Si+SiO2
En la interfaz del
sustrato y el SiO2 sucede una reaccion que genera vapor de SiO
By
generating SiO vapor from the silicon reduction of silica (SiO2 ) [28, 29, 32]
as illustrated by equation (1.3).
Si (solid) + SiO2 (solid) → 2SiO (vapor) (1.3)
Moreover,
some amount of silica (SiO2 ) was also found in the sample. It was
suggested that SiO vapor decomposed into SiO2 , according the following
equation:
2
SiO (vapor)→ SiO2 (solid) + Si
(2.2)
*SYNTHESIS AND CHARACTERIZATION OF a-SILICON
CARBIDE NANOSTRUCTURES
Enagnon Thymour Legba University of
Kentucky, etleg0@engr.uky.edu
2.2 SYNTHESIS AND CHARACTERIZATION OF a-SILICON CARBIDE NANOSTRUCTURE.pdf
Recommended Citation
Legba, Enagnon Thymour, "SYNTHESIS AND CHARACTERIZATION
OF a-SILICON CARBIDE NANOSTRUCTURES".
(2007). University of Kentucky Master's Theses. 494.