El
primer microprocesador
The
planar process was a logical outgrowth of the diffusion and oxide
masking process. Planarization was the creation of physicist Jean
Hoerni of newly-formed Fairchild Semiconductor. Hoerni observed the
production limitations of conventional 3-dimensional transistor
designs (e.g., the "mesa" transistor). Hoerni reasoned that
a design based on a "plain" would be superior. Thus, the
planar transistor, as the name implies, was flat. Flattening the mesa
enabled electrical connections to be made, not laboriously by hand,
but by depositing an evaporated metal film on appropriate portions of
the semiconductor wafer. Using a lithographic process of a series of
etched and plated regions on a thin, flat surface or wafer of
silicon, the "chip" was born out of the planar transistor.
Like the printing process itself, the planar process allowed for
significantly greater rates of production output at even higher
yields.
More
importantly, the planar process enabled the integration of circuits
on a single substrate since electrical connections between circuits
could be accomplished internal to the chip. Robert Noyce of Fairchild
quickly recognized this. As Gordon Moore recalls:
"When
we were patenting this [planar transistor] we recognized it was a
significant change, and the patent attorney asked us if we really
thought through all the ramifications of it. And we hadn't, so Noyce
got a group together to see what they could come up with and right
away he saw that this gave us a reason now you could run the metal up
over the top without shorting out the junctions, so you could
actually connect this one to the next-door neighbor or some other
thing."
Fairchild
introduced the first planar transistor in 1959 and the first planar
IC in 1961. Moore views the 1959 innovation of the planar transistor
as the origin of "Moore's Law."
Perhaps
more than any other single process innovation, planarization set the
industry on its historical exponential pace of progress. As one early
industrial technologist noted, "The planar process is the key to
the whole of semiconductor work." George Gilder's account in his
1989 treatise, Microcosm, is more eloquent:
"Known
as the planar integrated circuit, Fairchild's concept comprised the
essential device and process that dominates the industry today. . .
Ultimately it moved the industry deep into the microcosm..."
Bob Schaller. The Origin, Nature, and Implications of "MOORE'S
LAW" The Benchmark of Progress in Semiconductor Electronics.
1996.
http://research.microsoft.com/en-us/um/people/gray/Moore_Law.html
En
1968, Robert Noyce decide abandonar la compañía Fairchild
Semiconductor, para poder fundar en 1969, junto a Andrew Grove y
Gordon Moore, la compañía Integrated Electronics, conocida como
Intel.
En 1970,
Intel consiguió almacenar cadenas de ceros y unos, desarrollando la
primera memoria RAM. En 1971, consiguen integrar la memoria RAM
en la CPU, con lo que consiguen crear el primer ordenador comercial
al alcance del consumidor, el Altair 8800. En 1971, nació el primer
microprocesador, denominado 4004, compuesto por 4 chips desarrollados
por Ted Hoff y otros 2 chips de memoria. Poco después, Intel
comercializó el 8008. En 1981, Intel desarrolló los procesadores de
16 bits 8086 y los de 8 bits 8088. Estos procesadores permitieron a
IBM, por primera vez, confeccionar el primer PC. En 1982, Intel
desarrolló el 286 capaz de ofrecer compatibilidad con sus
predecesores.
En 1985, llegó el 386, un microprocesador de 32 bits. Fue adoptado por Compaq para su computadora personal Compaq Deskpro 386. En 1989 la compañía desarrolló Intel 486 de 1,2 millones de transistores. En 1990, Noyce investigaba acerca de los microchips, hasta que el 3 de junio falleció tras un fallo cardíaco. Después de su muerte, la compañía Intel prosiguió desarrollando los microprocesadores a través de la línea Pentium, consiguiendo que la mayoría de computadoras tengan como cerebro, un Pentium o un Celeron. En el año 2000, Jack Kilby recibe el Premio Nobel de Física, conjuntamente con Robert Noyce, por su trabajo acerca de los microprocesadores
En 1985, llegó el 386, un microprocesador de 32 bits. Fue adoptado por Compaq para su computadora personal Compaq Deskpro 386. En 1989 la compañía desarrolló Intel 486 de 1,2 millones de transistores. En 1990, Noyce investigaba acerca de los microchips, hasta que el 3 de junio falleció tras un fallo cardíaco. Después de su muerte, la compañía Intel prosiguió desarrollando los microprocesadores a través de la línea Pentium, consiguiendo que la mayoría de computadoras tengan como cerebro, un Pentium o un Celeron. En el año 2000, Jack Kilby recibe el Premio Nobel de Física, conjuntamente con Robert Noyce, por su trabajo acerca de los microprocesadores
The
exemplary technology of this era is the microchip—the computer
inscribed on a tiny piece of processed material. More than any other
invention, this device epitomizes the overthrow of matter. Consider a
parable of the microchip once told by Gordon Moore, chairman of Intel
and a founding father of Silicon Valley: “We needed a substrate for
our chip. So we looked at the substrate of the earth itself. It was
mostly sand. So we used that. “We needed a metal conductor for the
wires and switches on the chip. We looked at all the metals in the
earth and found alutninum was the most abundant. So we used that. “We
needed an insulator and too saw that the silicon in sand mixed with
the oxygen in the air to form silicon dioxide—a kind of glass. The
perfect insulator to protect the chip. So we used that.” The result
was a technology—metal oxide silicon (MOS), made from metal, sand,
and air—in which materials costs are less than 1 percent of total
expense. Combining millions of components on a single chip, operating
in billionths of seconds, these devices transcend most of the
previous constraints of matter. The most valuable substance in this,
the fundamental product of the era, is the idea for the design.
The
overthrow of matter in economics is made possible by the previous
overthrow of matter in physics. All the cascading devaluations of
matter in the global economy and society originate with the
fundamental transfiguration of matter in quantum science. Max Planck,
the discoverer of the quantum, offered the key when he asserted that
the new science entailed a movement from the “visible and directly
controllable to the invisible sphere, from the macrocosm to the
microcosm.” The macrocosm may be defined as the visible domain of
matter, seen from the outside and ruled by the laws of classical
physics. The microcosm is the invisible domain, ruled and revealed by
the laws of modem physics.
Microcosm
The Quantum Revolution In Economics And Technology . Pagina
18
Gilder, George
Gilder, George
No hay comentarios:
Publicar un comentario